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ABSTRACT

The ability to generate candidate molecules with certain chemi-
cal properties is key in novel material discovery. The generation
capability has been improved using larger training data, sophisti-
cated generative models, and sampling techniques. However, the
evaluation of generative models for material discovery and the
characterization of the generated candidate molecules is prema-
ture otherwise largely relies on costly and error-prone expert in-
volvement. Such evaluations help to improve understanding of
the generative process, differentiate across models, and facilitate
interaction between machine learning researchers and materials
scientists. To this end, we propose a toolkit for Multi-level Per-
formance Evaluation of Generative mOdels (MPEGO) for material
discovery applications. MPEGO aims to hierarchically characterize
and quantify the capability of generative models across the chemi-
cal and biological properties of molecules. The toolkit is validated
with two generative models: Graph Convolutional Policy Network
(GCPN) and a Flow-based Autoregressive (GraphAF) trained on
ZINC-250K molecules. Preliminary results show that the GCPN
generated molecules achieve higher independence from the training
molecules compared to GraphAF’s, across multi-level evaluation
metrics, whereas GraphAF molecules are found to achieve higher in-
dependence in scaffolding and molecular weight features. Finally, as
MPEGO is model-agnostic, it can be integrated with any generative
models for material discovery and beyond.
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1 INTRODUCTION

Machine learning methods, particularly generative models, have
shown to provide a promising potential for generating and optimiz-
ing novel molecules across material domains (e.g., drug, polymer,
etc.); by combining data-driven techniques and domain knowledge
to efficiently search the space of all plausible molecules and generate
new and valid ones [1, 10, 20, 24]. Traditional high-throughput wet-
lab experiments, physics-based simulations, and bio-informatics
tools for the molecular design process heavily depend on human
expertise. These processes require significant resource expenditure
to propose, synthesize and test new molecules, thereby limiting the
exploration space [6, 12, 15].

Generative models have been applied to facilitate the material
discovery process by employing inverse molecular design problem.
This approach transforms the conventional and slow discovery
process by mapping the desired set of properties to a set of struc-
tures. The generative process is then optimized to encourage the
generation of molecules with those selected properties. Multiple
approaches have suggested the use of latent representation learn-
ing coupled with different sampling techniques to achieve efficient
discovery. These examples range from Variational Autoencoders
(VAE) with different sampling techniques [2, 4, 7, 9] to Generative
Adversarial Networks (GANSs) [18].

The generation capability has been improved recently using
larger training data and sophisticated generative methodologies, the
evaluation of generative models in the natural sciences remains a
grand challenge [5]. Some of the reasons include the multi-objective
nature of real discovery problems, the intricacy of evaluating rele-
vant properties in-silico and the lack of widely accepted, model- and
property-agnostic success metrics for generative models. Quantify-
ing a specific subset of the evaluation metrics, e.g., using distance
measures between distributions of generated samples have been
discussed in prior work such as [17, 22]. These approaches are lim-
ited to understand the generation performance at sub-feature level,
e.g., in a specific range of a molecular weight.

In this paper, we introduce a Multi-level Performance Evaluation
of Generative mOdels (MPEGO) toolkit (see Fig. 1), which aims to
hierarchically characterize and quantify the generation capability of
models across the chemical and biological properties of molecules.
To that end, MPEGO is a model- and property-agnostic toolkit and
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its core design is derived from two main requirements: represen-
tative examples (of training and generated molecules) and one or
multiple properties (extracted from these molecules). Metrics de-
rived from MPEGO are also interpretable and provides multi-level
abstractions of the generation process. Specifically, the contribu-
tions of this paper are as follows:

(1) We provide low-level evaluation of generative models using
a novel Sub-feature-level Independence Score (SIS) between
the generated and training molecules.

(2) We derive high-level evaluation of generative models using
a principled and hierarchical aggregation of SIS values.

(3) We employ multi-dimensional subset scanning (MDSS) [13]
to automatically identify and characterize generation bias,
i.e., the types of molecules generated by each model with
extreme frequency.

(4) We validate MPEGO toolkit on two state-of-the-art gener-
ative models: GCPN [25] and GraphAF [19] trained with
molecules from ZINC-250K [11].

The organization of the paper is as follows. Section 2 summarizes
the related work on evaluation of generative models for molecular
discover. Section 3 formulates the problem concisely and presents
the core elements of the proposed MPEGO toolkit. Section 4 details
the experimental setup, including the datasets, feature extracted
and generative models used for validation. Section 5 presents and
discusses the results obtained from comparing the generation per-
formance of generative models using the MPEGO toolkit. Section 6
concludes the paper and outlines future work.

2 RELATED WORK

The state-of-the-art evaluation approaches for generative models
(and their generated molecules) aim to quantify pre-determined re-
quirements, such as diversity and validity, using a variety of metrics.
Frechet ChemNet Distance (FCD) [17] is one of such metrics, and it
measures the distance between hidden representations drawn from
sets of generated and training molecules using the ChemNet archi-
tecture, which is limited in disclosing low-level (sub-feature-level)
performance.

Benchmark platforms were also proposed to evaluate the gen-
eration process across a variety of metrics and generation tasks.
Examples of such benchmarks include GuacaMol [3] and Molecular
Sets (MOSES) [16]. GuacaMol [3] is one of the early benchmark
platforms for new molecule discovery, which aims to evaluate a
generative models across different tasks. These tasks include the
fidelity of the models to reproduce the property distribution of
the training sets, the ability to generate novel molecules, the explo-
ration and exploitation of chemical space, and a variety of single and
multi-objective optimization tasks. Molecular Sets (MOSES) [16]
is another benchmarking framework to evaluate the distribution
learning of generative models. To this end, MOSES provides train-
ing and testing datasets, and a set of metrics to evaluate the quality
and diversity of generated structures to standardize training and
model comparisons.

However, automated characterization of generated molecules,
and model-agnostic, quantitative and multi-level evaluation of
the generative models still remains challenging. These challenges

Girmaw Abebe Tadesse, Jannis Born, Celia Cintas, Matteo Manica, and Komminist Weldemariam

could be summarized as follows. First, multiple evaluation met-
rics are model-dependent. For example, Frechet ChemNet Distance
(FCD) [17] depends on latent representation in a neural network,
and Maximum-mean discrepancy (MMD) [8] is more specifically
used to evaluate graph-based generative models. State-of-the-art
metrics also suffer from limited generalizability (across different
level of abstractions) and interpretability, e.g., by domain experts.
In addition, existing evaluation metrics are susceptible to potential
flaws in predictive models used in goal-oriented or constrained
generation. Moreover, existing evaluation strategies lack a generic
and standalone evaluation metric that combines both distributional
metrics (e.g., uniqueness and diversity) and property-based met-
rics that score single property (e.g., aromatic). The dependency on
single-constraint-objective lacks a principled approach to incorpo-
rate multiple chemical target properties (e.g., molecular weight),
structural details (e.g., scaffold) and, synthetic metrics, such as
Qualitative Estimate of Drug-likeness (QED). This becomes a sig-
nificant challenge when a single and inaccurate evaluation metric
is used, which oversimplifies real discovery problems and hence
less practical.

The proposed MPEGO toolkit aims to provide an effective and
multi-level characterization of generated molecules (compared to
the training) and evaluation of their generative models. The multi-
level evaluation of MPEGO toolkit starts from sub-feature-based
performance evaluation (at the bottom), which provides low-level
evaluation of generative models. The sub-feature-based perfor-
mance scores are later aggregated hierarchically and across multiple-
properties to provide high-level evaluations and characterizations.

3 THE MPEGO TOOLKIT

In this section, we present the details of the proposed MPEGO
toolkit (see Fig. 1) that aims to evaluate the performance of gen-
erative models for the material discovery and to provide insights
that are interpretable to improving interactions between machine
learning researchers and experts in material science. We, first, for-
mulate the critical research questions MPEGO toolkit is designed
to address, followed by the details on MPEGO’s core components:
Feature extraction and preprocessing and Multi-level performance
evaluation.

3.1 Problem statement

LetG1,Go, -, Gk, - - , Gk are datasets of molecules that are gener-
ated from K black-box generative models (01,03, -+ , O, -+ ,Ok)
trained on a dataset of existing molecules, 7". Can we evaluate the
generation capability of each black box model in a scalable, easily
intepretable and multi-objective manner? Specifically, we aim to
address two specific questions.

Q1: Given a set of different chemical and biological features,
F = fi,foo s fms -+ s fm, extracted from each molecule,
how do we quantify the generation capability of each model
conditioned on one or more of these features, i.e., at different
levels of abstractions?

Q2: What are the characteristics of molecules being generated
with extreme frequencies (least or most) by each of the gen-
erative models, i.e., generation bias?
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Figure 1: Overview of the MPEGO toolkit for material discov-
ery.

To address Q1, we propose Hierarchical Independence Evaluation
(HIE) that aims to quantify the independence of generative models
compared to the training molecules. The hierarchy begins with
a sub-feature level evaluation at the bottom to the aggregation
of performance across all the features at the top. To address Q2,
we employ multi-dimensional subset scanning (MDSS) [13] that
aims to automatically identify and characterize generation bias, i.e.,
identifying molecules being generated by each model with extreme
frequency.

3.2 Feature extraction and pre-processing

Given representative examples of generated and training molecules,
MPEGO starts with the extraction of multiple features that encode
different chemical and biological properties of these molecules
(see Fig. 1). Examples of features include domain-expert driven
characteristics (e.g., Lipinski criteria), Molecular Weight, structural
attributes (Scaffold, Ring, Morgan bits), and synthetic metrics (e.g.,
QED, ESOL, and LogP). The detailed list of these features, along
with their description, is shown in Table 1 in Section 4.

The type of feature values could be binary (e.g., Aromatic where
Aromatic:1 represents the presence of an aromatic ring, and Aro-
matic:0 represent the lack of aromatic ring) or continuous (e.g.,
Molecular Weight). Thus, a preprocessing step is employed where
the continuous values are discretized into a number of bins that
provide low- or sub-feature-level evaluation of models. MDSS also
requires the discretization of feature values to allow the exploration
across different levels of combinations of their values.

3.3 Multi-level evaluation of generated
molecules and their models

Figure 2 provides the details of MPEGO’s multi-level evaluation
pipeline to quantify the performance of generative models, and its
core components are Hierarchical Independence Evaluation (HIE)
and Multi-dimensional Subset Scanning (MDSS), which are tailored
to evaluate the generative models from different perspectives (for-
mulated as Q1 and Q2 above).

3.3.1 Hierarchical Independence Evaluation (HIE). HIE follows a
bottom-up approach (from a sub-feature to a global aggregation
levels) in order to address Q1, i.e., multi-level performance evalua-
tion of generative models for material discovery across different
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properties encoded as features. HIE is based on a sub-feature-level
normalized objective measure (SNOM) between the sets of training
and generated molecules. While odds ratio is a commonly used ob-
jective measure, its values are unbounded (0, o) and hence it does
not directly satisfy the first key properties of a good association
measure outlined by [14] as if two variables are independent, their
association needs to be zero. To this end, our SIS computation em-
ploys Yule’s Y coefficients [26] that bounds the association measure
values in [—1, 1]. Yule’s Y measure is selected as it satisfies all the
key properties of objective measures in addition to anti-symmetry
under row or column permutation[21]. Below are the steps to uti-
lize SNOM and compute the hierarchical performance metrics as a
form of independence scores between the generated and training
sets of molecules.

Let f;, € ¥ is a feature with Cy, uniqe values or ranges, i.e.,
fm={f4}ue[1,2 -, Cp].Note that Cp, = 2 for binary features,
and Cy, is the number of unique values for a categorical features
or the number of bins after discretization of continuous features.
SNOM computation requires the stratification of both the generated
(Gk) and training (7°) datasets per each unique value/range f
resulting G/ and 7,7, respectively. The remaining subsets are éz:n
and %;n'; respectively, which are the subsets of molecules that are
not characterized by f, ie. G, = Gf, |(fm # fit) = G ~ G,
and 7 = T4 |(fin # fre) = T — 7. Accordingly, a 2 X 2 pivot
table is generated for each f% as:

‘ (fm = fm) ‘ (fm # fm)
Grm ‘ a ‘ B
Tm | 6 | v

where « is the number of generated molecules in G  that are

characterized by the feature value f, = f%, f is the number of
generated molecules in g'gn with fi;, # fi. Similarly, § and y are
the numbers of training molecules that satisfy f;; = f% and not
in 7,% and ‘771{ respectively. Note that a + f is total number of
generated molecules, i.e., |Gy |. Similarly,  + y is the number of
training molecules, i.e., |77|. Then SNOM per f is computed as a

form of Yule’s Y coefficient from the pivot table as o]':m e[-1,1]:

PGP ~\P(GE, P(T)

Okm - — — (1)
VPG )PTE) +\[P(GE, )P(T)
u \/0(_}/ - \/%
SR LA Lt (@)

0 =

km \/0(_}/ + \/ﬁ

Sub-feature-based Independence Score (SIS) is then computed
from SNOM value as [}’ = 1—|o}! |, whereI}’ € [0,1]and higher
I;;  reflects higher independence between the sets of generated and
training molecules, i.e., given a sub-feature f%, it will be difficult
to infer whether a molecule is from a generated or training set.
While low-level evaluation of generative models is provided via
SIS values, higher level independence evaluation scores are then
obtained from a principled aggregation of SIS values. Feature-level

Independence Score (FIS) is computed as I, = 25:1 AL, Via
Cm

a weighted aggregation of SIS values, where 3 ™ /l;c‘m = 1land
each /lzm weights the SIS of its corresponding unique value f%. In a



KDD Workshop, 2022, Washington DC, USA

Girmaw Abebe Tadesse, Jannis Born, Celia Cintas, Matteo Manica, and Komminist Weldemariam

________________________________________________

Global Aggregation of
Feature-based Independence
Score (GAFIS)

Selective Aggregation of !
AL, -+, In) Feature-based Independence »
Score (SAFIS) :

I

Independence Score

Feature-based 1
(FIS) i

Sub-feature based

Independence Scare

(SIS)

1

1

1 1 Cy rl Cy

: f 1 2 f 2 2

1

R LR LR R e e
: Anomalous

X subset

1

_________________________________________________

Multi-dimensional Subset
Scanning (MDSS)

Figure 2: Details of Multi-level evaluation component of the MPEGO toolkit that comprises Hierarchical Independence

Evaluation (i.e., SIS, FIS, SAFIS and GAFIS) and Multi-dimensional Subset Scanning (MDSS). A(- -

-) represents aggregation

operation, and anomalous subset refers to the logical combinations of features that characterize molecules generated with

extreme frequencies.

simple average aggregation, A]':m = 1/Cp,. Similarly, FIS values can
be aggregated for even higher-level evaluation of the models. Selec-
tive Aggregation of Feature-level Independence Score (SAFIS) and
Global Aggregatlon of Feature-level Independence Score (GAFIS)
are computed as [ = Zr 1 Mrlir, where Zr 11r=1,and R < M for
SAFIS and R = M for GAFIS computation, respectively.

3.3.2  Multi-dimensional Subset Scanning (MDSS). Generative mod-
els trained on similar set of molecules will hardly generate molecules
with exact characteristics, partly due to the variations in model
architecture, hyper-parameter setting and training methodologies.
Thus, there is potential generation bias in each model. To this end,
we employ MDSS to identify the characteristics of molecules being
generated with extreme frequencies (least or most) by each of the
generative models. Such approach requires unconstrained interac-
tions of different sub-feature values, e.g., Aromatic:1 and Molecular
Weight > 500 Daltons.

MDSS addresses the question by transforming the exploration
of divergent subset of generated molecules across the interaction
of multiple features into a search problem. MDSS utilizes additive
linear time subset scanning (ALTSS) property [13] to efficiently
search across potentially exponential combination of different fea-
tures values, i.e., given M features, the search space could be as
large as 2M — 1. Thus, the goal of MDSS is to automatically identify
the subset (also known as the anomalous subset) of molecules S
that are divergent compared to our expectation.

Specifically, to identify a subset of molecules being generated by
a generative model M., we first merge the corresponding Gj. and
7 datasets as D = Gy U 7, and an outcome label (y) is generated
for each molecule, i.e., y = 1 for molecules in Gy and y = 0 for
molecules in 7. if there are N; = |G| generated and Ny = |77|
training molecules in D, the expectation of generated molecules in
Diseg= NN, +N Thus, scanning for a subset of more frequently
generated molecules aims to identify molecules with extreme devi-
ation in their observation rates compared to ey.

The deviation between the expectation and observation is evalu-
ated by maximizing a Bernoulli likelihood ratio scoring statistic I'(-)
for a binary outcome, i.e., y € [0, 1]. The null hypothesis assumes
that the odds of the generated molecule in any subgroup § is simi-
lar to the expected, i.e., Hp : odds(S) = 1 eg ; while the alternative

hypothesis assumes a constant multiplicative increase in the odds
of the generated molecules in the anomalous or extremely diver-
gent subgroup 8%, i.e., Hy : odds(S%) = qlzg whereg #1(q > 1
for a subset of molecules generated with extremely high frequency
(over-generated), and 0 < q < 1 for a subset of molecules generated
with extremely low frequency (under-generated), compared with
the training set of molecules. The anomalous scoring function for
a subgroup (S) with reference D is formulated as, I'(S, D) and
computed as:

I'(S,D) = max log(q) Z yi — Ns = log(1 —eg + qeg),  (3)
ieS
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Table 1: Features extracted per each molecule (existing and
generated) that encode physical, biological and chemical
properties of these molecules. The features are then used
to analyze the association measures with the generated and
existing molecules via normalized odds ratio. In addition,
the divergent characteristics of these molecules is identified
and characterized using these interpretable features.

Feature ‘ Description

QED Qualitative Estimate of Drug-likeness

ESOL Estimated SOLubility

SCScore Synthetic Complexity Score

SAS Synthetic Accessibility Score.

Scaffold A molecule is identical to its scaffold

Ring A molecule contains a ring structure

LargeRing A molecule contains a ring structure with more than 6 atoms

Aromatic A molecule contains an aromatic ring

SteroCharacter SMILES string contains a stereochemistry string.

Stereocenter Whether a molecule contains a stereocenter,

Heterocycle A molecule has at least one ring with at least two different
atoms

Lipinski A molecule adheres to the Lipinski’s rule of five.

HBondDonor A molecule has not more than 5 hydrogen bond donors

HBondAcceptor | A molecule has not more than 10 hydrogen bond acceptors

MolecularWeight | The molecular mass in Daltons

LogP Logarithmic partition coefficient

Table 2: Summary of hyper-parameters set-up to train the
two graph-based models: GCPN and GraphAF using ZINC-
250K dataset.

Models
Setting GCPN GraphAF
Input Dimension 18 9
Number of relation 3 3
Batch normalization False True
Atom types [6-9, 15-17, 35, 53] | [6-9, 15-17, 35, 53]
Hidden dimensions | [256, 256, 256, 256] [ 256, 256, 256]

where Nj is the number of molecules in S. The anomalous subset,
8¢, identification is iterated until convergence to a local maximum
is found, and the global maximum is subsequently optimized using
multiple random restarts.Thus, S¢ is a subset of molecules with the
largest T'(S, D), which encodes both the divergence and size of the
subset compared to the expectation.

4 EXPERIMENTAL SETUP

We utilize the publicly available ZINC-250K! dataset to train the
two graph-based generative models selected for MPEGO’s valida-
tion: GCPN [25] and GraphAF [19]. ZINC-250K contains 249, 455
small molecules in Simplified Molecular-Input Line-Entry System
(SMILES) representation. Details on ZINC tool is available in [11].
We also generated 10, 000 small molecules (in SMILES) from each
of trained GCPN and GraphAF models. We utilize PyTorch imple-
mentation of the two graph generated models with experimental
set-ups shown in Table 2.

Ihttps://www.kaggle.com/datasets/basu369victor/zinc250k
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In addition to the SMILES representation, a few molecular prop-
erties are also provided for each molecule in ZINC-250K. These
properties include logP (water—octanal partition coefficient), SAS
(synthetic accessibility score) and QED (Qualitative Estimate of
Drug-likeness). We later extracted more features from both training
and generated molecules using RDKit Chemoinformatics Software?
that helps to automatically extract domain-specific chemical and
biological properties as features. A total of a total of 16 features are
extracted (as shown in Table 1). We excluded the SteroCharacter
feature from our analysis since both GCPN and GraphAF were un-
able to encode the sterochemistry due to the inductive bias nature
of the graph-models. For continuous features, we employ quintile
based discretization that segments the values into five bins.

We employ the Hierarchical Independence Evaluation (consist-
ing of SIS, FIS, SAFIS and GAFIS) to quantify the performance of
generative models with respect to the training molecules. We also
utilize the histogram of features to provide qualitative comparison
of the distributions from generated and training molecules in ref-
erence to the quantitative sub-feature-based normalized objective
measure (SNOM). SNOM directly reveals over- or under-generation
of molecules at different sub-feature levels (ranges). The characteri-
zation of the identified anomalous subgroup (S%) of MDSS includes
providing the logical combination of anomalous feature values, the
size of the subgroup N, the odds ratio between S¢ and Sa=p-8°
and its 95% Confidence Interval (CI) and empirical p value.

5 RESULTS AND DISCUSSION

In this Section, we present and discuss results obtained from hier-
archical performance of generative models in the form of indepen-
dence scores (SIS, FIS, SAFIS and GAFIS) and automated detection
and characterization of generation bias (obtained via MDSS).

5.1 Hierarchical Performance Evaluation of
Generative Models

Table 3 provides detailed analysis of hierarchical quantification
of the generation performance of GCPN and GraphAF models us-
ing the training (ZINC-250K) dataset as a baseline. To demonstrate
the step-by-step evaluation of these models , two continuous fea-
tures were selected as examples: QED and Molecular Weight. These
features were discretized into five bins in the pre-processing step.
Sub-feature-level normalized objective measure (SNOM) is derived
for each bin via Yule’s Y Coefficient as OZm € [-1,1], and the —ve
sign suggests the direction of dependency (i.e., negative correla-
tion) and its magnitude reflects the level of dependency. Note that
ideal independence translates to zero valued SNOM values[21]. We
derive SIS that directly quantifies the sub-feature-based indepen-
dence score (I]':m € [0, 1]), and the higher SIS value reflects higher
Independence. The results show that GCPN generated molecules
achieve higher independence than GraphAF’s molecules compared
to the training ZINC-250K, across multiple QED bins (I, Il and V).
On the other hand, GraphAF generated molecules demonstrates
higher independence across the majority of Molecular Weight bins
(I, VI and V). These findings could be qualitatively understood from
the histogram of the distributions of the two features shown in Fig 3,

https://www.rdkit.org/



KDD Workshop, 2022, Washington DC, USA Girmaw Abebe Tadesse, Jannis Born, Celia Cintas, Matteo Manica, and Komminist Weldemariam

Table 3: Multi-level evaluation metrics to compare the performance of the two graph-based generative models: GCPN and
GraphAF that are trained on ZINC-250K dataset. QED and Molecular Weight features are selected as examples. First, each
feature is discretized into five bins (I-V) and range of values for each bin is shown. The multi-level metrics are SNOM, SIS and
FIS. SNOM provides the sub-feature based normalized odds ratio computing using Yule’s Y coefficients; SIS: sub-feature-level
independence score derived for each bin; and FIS: feature-level independence score that aggregates the SIS values of all the bins

in a given feature.

Multi-level Evaluation Metrics

SNOM SIS FIS
Feature Bins Range GCPN  GraphAF | GCPN  GraphAF | GCPN  GraphAF
I (0.023, 0.607] -0.017 0.502 0.983 0.498
II (0.607, 0.717] 0.075 -0.029 0.925 0.971
QED I (0.717, 0.789] 0.034 -0.259 0.966 0.741 0.953 0.653

v (0.789, 0.850] -0.017 -0.403 0.983 0.597
\% (0.850, 0.948] -0.090 -0.540 0.910 0.460

I (16.042, 272.372] 0.505 0.430 0.495 0.570
II (272.372, 313.466] | -0.051 -0.209 0.949 0.791

Weight III  (313.466, 345.402] | -0.273 -0.317 0.727 0.683 0.677 0.739

IV (345.402, 377.259] | -0.394 -0.339 0.606 0.661
VvV (377.259, 836.218] | -0.393 0.012 0.607 0.988

where closer resemblance of the QED distributions from GCPN gen-
erated and training molecules is shown in Fig. 3 (a). The higher-than-
training QED histogram of GraphAF molecules for bin-I (i.e., QED
< 0.6) is detected by SNOM= 0.502 (i.e., over-generation) in Table 3,
whereas lower-than-training QED histogram for bin-V (i.e.,QED
> 0.8 is detected with SNOM = —0.540 (i.e., under-generation).
When Molecular Weight is considered (see Fig. 3 (b)), GCPN’s dis-
tribution resembles that of the training, particularly in the bins II
and IIL, i.e., in the weight range between 270 < and < 354 Daltons).
However, GraphAF’s histogram shows closer resemblance in the
tails of the training, i.e., Weight > 345 Daltons. The feature-based
independence score (FIS) is aggregated from SIS values of all the
bins in a feature as Ij,,,. The QED-based GCPN’s FIS = 0.953 and
GraphAF’s FIS = 0.653 demonstrate that GCPN model has superior
capability of generating molecules with similar QED values as the
training molecules, i.e., higher independence. On the other hand,
GraphAF has achieved higher Molecular Weight-based (FIS =0.739)
than that of GCPN (FIS = 0.677) due to its higher SIS values for
extreme bins (tails of the distribution).

Table 4 provides extended FIS values across each of the features
considered for the analysis in this work. Based on FIS values, the
results show that GCPN generated molecules demonstrate higher
independence compared to GraphAF’s molecules. These features in-
clude synthetic metrics, such as QED, ESOL, SCScore, SAS and LogP.
In addition, GCPN is shown to outperform GraphAF in features
such as Ring, Aromatic, Lipinski, Heterocenter and Heterocycle.
GraphAF molecules are also shown to demonstrate higher inde-
pendence from the training set of molecules across features such
as Scaffold, HBondAccepter and MolecularWeight. The last two
rows in Table 4 represent high-level aggregation of FIS values. The
penultimate row represents an examples of SAFIS that aggregated
the FIS of selected structural features (i.e., Scaffold, Ring, LargeRing
and Aromatic). GCPN’s SAFIS = 0.694 compared to GraphAF’s
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Figure 3: Visualization of the comparison of the GCPN and
GraphAF models as per their QED values. The QED distribu-
tion of the training molecules is also provided to visualize
the similarity/divergence of the generated molecules.
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Table 4: Feature-based Independence Score (FIS) for all the
15 features considered in the comparative analysis of the
two generative models (GCPN and GraphAF). The penulti-
mate row represents an example of Selective Aggregation of
Feature-level Independence Score (GAFIS), where Scaffold,
Ring, Large Ring and Aromatic features are purposely se-
lected to compare the models in their structural details. The
last row represent Global Aggregation of Feature-level In-
dependence Score (GAFIS) that is aggregated across all the
features.

Models

Independence Score GCPN  GraphAF
QED 0.953 0.653

ESOL 0.910 0.858
SCScore 0.835 0.758

SAS 0.955 0.738
Scaffold 0.644 0.778

LogP 0.951 0.938

Ring 0.806 0.669

FIS LargeRing 0.580 0.472
Aromatic 0.747 0.431
HBondAcceptor 0.054 0.938
HBondDonors 0.273 0.2438
MolecularWeight 0.677 0.739
Lipinski 0.771 0.543
Heterocenter 0.964 0.905
Heterocycle 0.834 0.789

SAFIS  Structural features  0.694 0.588
GAFIS All features 0.730 0.697

SAFIS = 0.588 reflects GCPN’s capability to generate molecules
with higher structural independence from the training molecules.
The last row represent GAFIS that aggregated the FIS values from
all the features considered, and GCPN (GAFIS = 0.730) has shown
to slightly outperform GraphAF (GAFIS = 0.697). Note that the
results above are generated using equal weighting among different
bins. However, the proposed approach is flexible to utilize different
weighting strategies that aim to encourage generation molecules
with a specific range(s) of feature values.

5.2 Automated Detection and Characterization
of Generation Bias

MDSS is applied to detect and characterize generation bias in these
models, i.e., the types of molecules generated by each of the gener-
ative models under extreme frequency, and the results are shown
in Table 5. The first row in Table 5 shows the details of molecules
that are most frequently generated by GCPN models (Training vs.
GCPN). The results show that the anomalous subset of molecules
is described by the combinations of anomalous features as: absence
of Scaffold with smaller Molecular Weight (< 272.372 Daltons)
and LogP > 1.303. Compared to the complimentary subset of the
molecules (i.e., those not characterized by the identified anomalous
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subset), these molecules are generated by GCPN with an odds ratio
of 11.46.4, 95% CI: (10.99,11.94, p < 0.01). We repeated the same
experiment but to identify molecules more frequently generated by
GraphAF, i.e., Training vs. GraphAF (second row). The anomalous
subset of molecules by GraphAF are characterized by higher SAS
(> 3.135) and lower QED (< 0.607) and Ring (< 3) values. Com-
pared to the training molecules, GraphAF model generates these
types of molecules of with an increased odds ratio of 29.4, 95% CI:
(28.11,30.75), p < 0.01.

5.3 Limitations

While our MPEGO toolkit provides a multi-level evaluation of gen-
erative models by characterizing the generated molecules at dif-
ferent levels of abstractions, the following limitations need to be
considered. First, MPEGO heavily depends of the discretization of
continuous features, and the quintile based binning adopted in this
work is generic, and it could greatly benefit from domain expert
insight. The paper is also lacks direct comparison with existing
comparison benchmarks, such as GuacaMol [3] and MOSES [16],
which is our immediate next step. Importantly, findings obtained
using the proposed MPEGO approach and characteristics driven
from the generative models still requires further validations from
domain experts.

6 CONCLUSION AND FUTURE WORK

We proposed MPEGO - a simple, generalizable, and model-agnostic
evaluation toolkit of generative models for material discovery.
Given examples of training and generated molecules from a model,
MPEGO employs extraction of physical, chemical, and biological
properties of these molecules as features for the analysis. MPEGO
consists of two main performance evaluation blocks: Hierarchical
Independence Evaluation (HIE) and Multi-dimensional Subset Scan-
ning (MDSS). HIE follows a bottom-up approach to quantify the
generation performance of a model, starting from per sub-feature
level (at the bottom) to the global aggregation of features (at the
top). Thus, HIE provides a flexible performance evaluation of gener-
ative models. MDSS is applied to detect and characterize generation
bias, i.e., to identify the types of molecules a particular model is
more likely to generate. The proposed MPEGO toolkit was validated
with ZINC-250K training dataset and two graph-based deep gener-
ative models (GCPN and GraphAF). The results show that GCPN
generated molecules exhibit higher independence across multiple
features, compared to GraphAF’s molecules using the training base-
line. MDSS results show that GCPN generated molecules, compared
to GraphAF’s molecules, are found to have lower Molecular Weight,
higher QED, and lower SAS values.

Generally, the proposed toolkit provides encouraging evaluation
metrics and further insights to understand better the under- or
over-generation of molecules and their characterizations at differ-
ent levels of evaluation. Such insights could help to introspect the
generation process and to further improve the generation quality
via improved interactions between machine learning researchers
and domain experts in material science. Future work aims to extend
MPEGO with more functionalities, to evaluate more generative
models and molecule representations, to directly compare with
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Table 5: Automated characterization of the identified subsets of molecules that were generated by GCPN and GraphAF models

with extreme frequency, compared to the training set (ZINC-250K).

MDSS Input MDSS Anom. Output Characterization

Molecules Size Outcome Expected Subset Size  Observed OR (95% CI), p
Training 259,455 GCPN 0.039 Scaffold=0 and | 28,555 0.189 11.46 (10.99, 11.94),
vs. GCPN Weight < 272.4 and p <0.01

LogP > 1.3
Training 259,455 GraphAF 0.039 Ring < 3 and | 13,420 0.376 29.4 (28.11,30.75),
vs. SAS > 3.1 and p <0.01
GraphAF QED < 0.6

existing benchmarks (e.g., MOSES and GuacaMol), and then to inte-
grate with existing open-source resources to accelerate hypothesis
generation in the scientific discovery, such as Generative Toolkit
for Scientific Discovery (GT4SD) [23]. Furthermore, the MPEGO-
driven insights will be utilized to improve the generation capability,
particularly in goal-oriented generation process.
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