
EMCNet : Graph-Nets for Electron Micrographs Classification
Sagar Srinivas∗

sagar.sakhinana@tcs.com
TCS Research

Bangalore, India

Rajat Sarkar∗
rajat.sarkar1@tcs.com

TCS Research
Pune, India

Venkataramana Runkana
venkat.runkana@tcs.com

TCS Research
Pune, India

ABSTRACT
Characterization of materials via electron micrographs is an im-
portant and challenging task in several materials processing in-
dustries. Classification of electron micrographs is complex due to
the high intra-class dissimilarity, high inter-class similarity, and
multi-spatial scales of patterns. However, existing methods are
ineffective in learning complex image patterns. We propose an
effective end-to-end electron micrograph representation learning-
based framework for nanomaterial identification to overcome the
challenges. We demonstrate that our framework outperforms the
popular baselines on the open-source datasets in nanomaterials-
based identification tasks. The ablation studies are reported in great
detail to support the efficacy of our approach.

KEYWORDS
graph neural networks, computer vision, materials characterization

1 INTRODUCTION
Quality control in materials processing is of paramount importance
across diverse industrial sectors such as batteries, semiconduc-
tors, etc. Electron microscopes are used to create high-resolution im-
ages of materials known as electron micrographs. They provide the
topography, morphology, composition, and crystallographic infor-
mation to examine the structure of materials at the nanoscale. The
nanomaterial recognition tasks[2] are challenging compared to the
image-recognition benchmark datasets in degree of detail, complex-
ity of patterns, and information density. The conventional model-
ing approaches for image-recognition tasks such as ConvNets([35],
[32]), Vision transformers(ViTs, [19], [40], [16], [10], [56], [38]) and
hybrid architectures([54], [27], [53]) suffer from inherent draw-
backs of (a) requirement of large training datasets to introduce
appropriate inductive biases and (b) large scale model complexity.
The traditional Graph Neural Networks(GNNs, [39], [42], [51], [37],
[24], [11]) learn and encode the complex discrete graph data by
summarizing the high-level feature information in the graph-level
embedding. The graph representation learning presents an alternate
paradigm of approach for automatic identification of nanomaterials
from their morphology or shape in the electron micrographs. The
graph representation of the complex nanomaterial images has the
spatial hierarchies of the high-level visual features embedded in a
wide spectrum of graph structural-property information spanning
across nodes, edges, motifs, and subgraphs. There is a need and
necessity to tailor the architecture of traditional GNNs to effectively
learn the structural characteristics of the graph for improved per-
formance in the graph-level classification tasks. This work presents
an overarching view of electron micrographs by effectively learn-
ing the multilevel and multiview representations for the global
reasoning of the complex visual content embedded in the graph.

∗Both authors contributed equally to this research.

In contrary to traditional CNNs, the novel framework identities
the discrete entities(low-level visual elements) and their pairwise
relationships from the fixed-graph topology for better visual per-
ception of nanostructures in the images. The proposed framework
offers better generalization and scalability for large datasets.

2 OUR APPROACH
This section presents the Electron Micrographs Classification Net-
work for brevity, EMCNet for nanomaterials identification. Our
framework consists of sixmain steps, (1) tokenization of the nanoscale
images; splitting each image into patches and representing it as a
patch-attributed grid graph with diagonal edges, (2) Graph encoder,
for brevity,GEnc; performs the iterative neighborhood-local aggre-
gation schemes on the augmented graphs for learning the abstract
graph representations, (3) Hierarchical graph encoder, for brevity,
HGEnc; performs the layer-wise local-graph pooling and higher-
order message-passing schemes to learn the implicit multi-grained
hierarchical representations, (4) tree decomposition; we perform
the tree decomposition of the grid graph to obtain a clique tree
graph,(5) Clique tree encoder, for brevity, CTEnc; performs the
iterative neighborhood message-passing schemes on the clique tree
graph to learn the local substructures in the graph, and (6) the out-
put layer; applies a weighted linear transformation on the learned
representations and predicts the image category. The overview of
the EMCNet framework is illustrated in Figure 1.

GEnc HGEnc CTEnc

Output Layer

Input Graph

Label

Figure 1: Overview of EMCNet framework, (a) we represent each
image as a grid graph, (b) the GEnc andHGEncmodules of the frame-
work computes the respective grid graph representations, (c) the
CTEnc module determines the tree representation, and (d) the out-
put layer predicts the image category.

2.1 Tokenization of Images
Let us assume that H, W, and C denote the dimensions of an RGB
image, where H is the height, W is the width, and C is the number of
channels. For a given 3D image, I ∈ R𝐻×𝑊 ×𝐶 and the resolution of
each patch (P, P,C). We split the 3D image into “N” non-overlapping
patches(also known as tokens). N is determined by HW

P2 . In a nut-
shell, each 3D image is reshaped to obtain a sequence of flattened
2D patches, I𝑃 ∈ R𝑁×𝑃2𝐶 . The independent patches are projected
into a 𝑑-dimensional embedding space to obtain the low-level patch
representations, I𝑃 ∈ R𝑁×𝑑 . It is described below,

MLMS Workshop, KDD’22, Sagar and Rajat et.al

I𝑃 = I𝑃E (1)

The trainable patch embeddings, E ∈ R𝑃2𝐶×𝑑 are the semantic
representations of the patches in vision tasks. The patch represen-
tations suffer from the inherent drawback of lack of patch locality-
preserving information. The position embeddings, P𝐸 ∈ R𝑁×𝑑

are linearly added to the patch representations to enable position
awareness, refer to Figure 2. The position embeddings along with
the patch embeddings are randomly initialized and are jointly up-
dated along with the network parameters during the training of
the model. We represent the patches of each image as the nodes
of a regular static graph. In general, there is no natural ordering
of the nodes in the graph. Here, we expose our model to the posi-
tional information of the patches to effectively exploit the locality
information to perform better on the evaluation metrics. Figure 3
depicts the illustration of the tokenization of the images.

Figure 2: For illustration purpose, we split the image into 3 × 3
patches and represent it as an undirected graph.

Figure 3: For illustration purpose, we split an image into 2 × 2
patches. In the absence of positional information, the GNNs cannot
distinguish the images on the left and right.

2.2 Graph Representation
We represent each nanoscale image as the node-attributed undi-
rected graph, G = (V, E). The node set, V denote the sequence
of patches. The node feature matrix is described by 𝑋 ∈ R𝑁×𝑑 .
𝑁 (|V|) denotes the number of nodes. 𝑑 is the dimensionality of
the node feature vector. The patches are connected through an
edge to adjacent patches. E denotes the edge-set. It is obtained
from the graph structure information. The graph structure can also
be represented by the adjacency matrix, A ∈ R𝑁×𝑁 . A[𝑣,𝑢] = 1

if (𝑣,𝑢) ∈ E or else A[𝑣,𝑢] = 0. Here, 𝑢 & 𝑣 ∈ V refers to the
local-graph neighbors and are connected by an arbitrary edge char-
acterized by an empty edge attribute, (𝑣,𝑢) ∈ E ↔ (𝑢, 𝑣) ∈ E,
∀𝑣 ∈ N (𝑢). The local-graph neighbors of each node are described
by N(𝑢) = {𝑣 ∈ V | (𝑣,𝑢) ∈ E}. The graph representation of the
nanoscale images has a grid-like structure and has fixed dependency
relationships among the nodes of the graph across the diverse set of
images. Given a dataset (G𝑖 , 𝑦𝑖) = {(G1, 𝑦1) , · · · , (G𝑛, 𝑦𝑛)}, where
𝑦𝑖 is the ground truth label of G𝑖 , the objective of the graph-level
classification task is to learn a novel mapping function 𝑓 : G𝑖 → 𝑦𝑖
that maps the discrete graphs to the set of labels.

2.3 Graph Encoder(GEnc)
The objective of the graph encoder is to map the high-dimensional
discrete graphs information to the low-dimensional graph-level rep-
resentations in the Euclidean space. We propose a message-passing
neural network to model the discrete graphs, G𝑖 for determining
both the node-level z𝑢 , 𝑢 ∈ V(G𝑖), and the graph-level abstract
representations zG𝑖

, whilst maximally preserving the high-level vi-
sual feature information embedded in the graphs. We augment each
graph with a virtual master node. The master node is bidirectionally
connected to all nodes of the graph through virtual edges. The vir-
tual edges represent the pairwise relationships between each “real”
node and the master node in the graph. The augmented graph is not
a fully-connected graph. The virtual master node representation
contains the global-information of the nodes. Each node reads and
writes to transform the virtual master-node representation through
the iterative message-passing schemes. Neural messages are com-
municated across the nodes of the augmented graphs through the
edges connecting them. The neural messages encapsulate the im-
mediate graph neighbors information. The neighborhood-local ag-
gregation schemes learn the node-level abstract representations.
The node representations capture the rich local and informative
long-range pairwise interactions spanning across the graph. The
virtual master node helps in providing an additional path for mes-
sage propagation to promote the information diffusion between the
distant nodes of the graph. It helps in learning the global structural
properties for a graph-wide representation. Each node in the graph
receives and sends neural messages to its local-graph neighbors.
At first, the source node 𝑣 ∈ V receives neural messages Φ𝑤𝑣
from its local-graph neighbors,𝑤 ∈ N (𝑣)\𝑢. Φ𝑤𝑣 is modeled by a
linear operator to encode the neighboring node’s abstract represen-
tations. The subscript,𝑤𝑣 indicates the message propagation from
the node 𝑤 to node 𝑣 . Subsequently, the source node, 𝑣 ∈ N (𝑢)
modifies the neural message vectors Φ𝑤𝑣 with its feature vector 𝑥𝑣 ,
and applies non-linearity to compute the neural-message vector
Φ𝑣𝑢 . The source node sends the neural message Φ𝑣𝑢 to the sink
node 𝑢 to refine the node embedding z𝑢 . In short, each source
node, 𝑣 ∈ V dispatches neural messages to the sink node, 𝑢 ∈ V
only after it receives all the incoming neural messages from its
neighbors, Φ𝑤𝑣,𝑤 ∈ N (𝑣)\𝑢. Algorithm 1 presents our Graph En-
coder(GEnc). For each message-passing iterative step, the receptive
field increases by one hop. We compute the refined neural mes-
sage vector by instigating additional rounds of message-passing
to embed the larger neighborhood of each node by iterating for T
steps. Each node in the graph perceives the refined neural messages
sent from its immediate graph neighbors to transform its abstract

EMCNet : Graph-Nets for Electron Micrographs Classification MLMS Workshop, KDD’22,

representation. The transformed node representations encode the
local substructure information about its T-hop neighborhood. We
determine the fixed-size graph-level embedding zG𝑖

by perform-
ing the sum-pooling operation on the node-level embeddings. The
weight matrix, W𝑔 applies a shared linear transformation on each
node feature vector. The trainable parameters, U𝑔1 and U𝑔2 of the
iterative graph message-passing schemes are shared across nodes
of the graph. 𝜏 is a non-linear sigmoidal function. The optimal selec-
tion of message-passing iterative-steps (neighborhood aggregation)
trade-offs the under-representation and the over-smoothing of the
node-level representations of the augmented graph to encode the
larger local-graph neighborhood. The graph-level representation
obtained from the node-level representations of the augmented
graphs with fixed graph topology and varying node features are
discriminative enough to achieve higher classification accuracy. In
summary, the graph encoder maps the discrete graph data to the
optimal graph-level representations by learning to model the visual
information embedded in the complex structural properties of the
graph. It is utilized in the downstream tasks to perform inference
on the graphs through label predictions.

Algorithm 1 Iterative Graph Message Passing Mechanism

Initialize messages: Φ(0)
𝑤𝑣 = 0

for 𝑡 = 1 to 𝑇 do
Φ
(𝑡)
𝑤𝑣 = 𝜏

(
W𝑔𝑥𝑤 +∑

𝑤∈N(𝑣)\𝑢 Φ
(𝑡−1)
𝑤𝑣

)
Φ
(𝑡)
𝑣𝑢 = 𝜏

(
W𝑔𝑥𝑣 + Φ

(𝑡)
𝑤𝑣

)
end for
z𝑢 = 𝜏

(
U𝑔1𝑥𝑢 +∑

𝑣∈N(𝑢) U
𝑔

2Φ
(𝑇)
𝑣𝑢

)
Return zG𝑖

=
∑
𝑢 z𝑢/|V|.

2.4 Hierarchical Graph Encoder(HG-Enc)

Figure 4: The nodes are labeled for illustration.We gradually reduce
the graph size in progressive layers, by rejecting the nodes of lower
importance and learn the high-level representations through the
self-attention based message-passing schemes.

The HG-Enc module learns the prominent subgraph structures to
determine the hierarchical representations of the graphs. The HG-
Enc module overcomes the following shortcomings, (1) traditional
GNNs treat all the nodes equally by disregarding the subset of nodes
of high importance; explicitly, it models all the patches of an image
without consideration of the visual content, (2) the tokenization
of the images results in non-overlapping patches and this skips
the boundary-level information present in the adjacent patches of
an image, and (3) there is a need to learn the scale-variant visual
elements in the underlying graph, and this would be intractable for
the conventional GNNs to encode from the independent patches
of a fixed scale. Figure 4 depicts the illustration of the hierarchical
graph encoder. The key steps in the HG-Enc module are (a) the

basis for pooling the graph to obtain the pooled graph, (b) structure
learning of the pooled graph, and (c) determining the higher-order
node representations of the pooled graph. The HG-Enc module
performs the non-linear down-sampling by adaptively rejecting a
subset of nodes in the main graph to form an induced subgraph
through an importance score measure. The importance score of
each node is determined by performing a scalar projection of the
node-level embedding on the trainable projection vector. The node
embeddings are determined through the spatial-graph filtering
operations.

𝑧
(𝑙+1)
𝑢 = ReLU

(
𝛼𝑢,𝑢𝑊

(𝑙)𝑧 (𝑙)𝑢 +
∑︁

𝑣∈N (𝑙) (𝑢)
𝛼𝑣,𝑢𝑊

(𝑙)𝑧 (𝑙)𝑣
)

(2)

where 𝑧0𝑢 = 𝑥𝑢 ∈ R𝑑 is the feature vector of node 𝑢. 𝑧 (𝑙)𝑢 ∈ R𝑑
denotes the abstract representation of node 𝑢. The superscript, 𝑙
denotes the layer. The set of neighbors of a node 𝑢 obtained from
the adjacency matrix A (𝑙) , is N (𝑙) (𝑢) =

{
𝑣 | A (𝑙) [𝑣,𝑢] > 0

}
. The

trainable weight matrix, W(𝑙) ∈ R2𝑑×𝑑 applies a shared linear trans-
formation on the node feature vector, and the attention coefficients
𝛼𝑣,𝑢 are determined as,

Z (𝑣,𝑢) = ReLU
(
𝑎⊤ (𝑟𝑢 ⊕ 𝑟𝑣)

)
; 𝑟𝑢 =𝑊𝑧

(𝑙)
𝑢 (3)

𝛼𝑣,𝑢 =
exp(Z (𝑣,𝑢))∑

𝑘∈N (𝑙) (𝑢)∪{𝑢 } exp(Z (𝑘,𝑢))
(4)

Where 𝑎 is the vector of the weighted coefficients for the atten-
tion mechanism. ⊕ denotes the concatenation operation. 𝑟𝑢 is the
linearly transformed patch representations. ReLU is the non-linear
activation function. The layer-wise forward propagation of the
HG-Enc operator is described by,

𝑠𝑢 = 𝑧
(𝑙+1)
𝑢

𝑝 (𝑙+1)

∥𝑝 (𝑙+1) ∥
(5)

where 𝑧
(𝑙+1)
𝑢 , 𝑝 (𝑙+1) ∈ R2𝑑 & 𝑠 ∈ R |V (𝑙) | . 𝑝 (𝑙+1) denotes the

trainable projection vector to map the node representations into the
importance score. The scalar projection of the node-attributes on
the normalized projection vector is described by 𝑠 . The importance
score is utilized to rank the nodes in the graph to reduce the graph
size. For a given pooling ratio 𝑝𝑟 , we select a subset of top m-ranked
nodes in the main graph. The pooling ratio is described by, 𝑝𝑟 =
𝑚

|V (𝑙) | , ∀ 𝑝𝑟 ∈ (0, 1]. The node ranking operation, idx = rank(𝑠,𝑚)
utilizes the scalar projection scores to sample the top m-prominent
nodes. idx describes the indices of the selected top m-nodes in the
graph. We obtain the pooled graph G (𝑙+1) from the main graph
G (𝑙) by utilizing the prominent nodes indices obtained through
the node-ranking operation. The pooled graph-structure and node
attribute information is described as,

A (𝑙+1) = A (𝑙) (idx, idx); A (𝑙+1) ∈ R𝑚×𝑚, A (𝑙) ∈ R |V
(𝑙) |× |V (𝑙) |

where A (𝑙+1) is the adjacency matrix of the pooled graph. The
node attribute matrix of the pooled graph G (𝑙+1) is described by,

𝑍 (𝑙+1) = 𝑍 (𝑙) (idx, :); 𝑍 (𝑙+1) ∈ R𝑚×2𝑑 , 𝑍 (𝑙) ∈ R |V
(𝑙) |×2𝑑 (6)

A gating operation is performed to regulate the information flow
to avoid inadvertent over-smoothing of the node representations,

𝑠 = ReLU
(
𝑠 (idx)

)
(7)

𝑍 (𝑙+1) = 𝑍 (𝑙+1) ⊙
(
𝑠1𝑇2𝑑

)
(8)

MLMS Workshop, KDD’22, Sagar and Rajat et.al

12𝑑 ∈ R2𝑑 is a vector of size 2𝑑 and with each component value
of 1. ⊙ denotes the element-wise product. We will apply the self-
attention mechanism to learn the compact hierarchical node repre-
sentations of the pooled graph from the input node representations
as given by the node attribute matrix, 𝑍 (𝑙+1) , refer Equation 8. The
hierarchical node representation is computed as the weighted sum
of the node attributes of the pooled graph,

𝑧
(𝑙+1)
𝑢 =

∑︁
𝑘

𝛼𝑘𝑢

(
𝑧
(𝑙+1)
𝑘

𝑊
(𝑙+1)
𝑉

)
, 𝑘 ∈ N (𝑙+1) (𝑢) ∪ {𝑢} (9)

where 𝑧
(𝑙+1)
𝑢 ∈ R𝑑 . Each weight coefficient 𝛼𝑘𝑢 is computed

using a softmax as,
𝛼𝑘𝑢 =

exp (𝑒𝑘𝑢)∑
𝑘 exp (𝑒𝑘𝑢)

, (10)

where 𝑒𝑣𝑢 is calculated using scaled dot-product attention. It is
described by,

𝑒𝑘𝑢 =

(
𝑧
(𝑙+1)
𝑢 𝑊

(𝑙+1)
𝑄

) (
𝑧
(𝑙+1)
𝑘

𝑊
(𝑙+1)
𝐾

)𝑇
√
𝑑

(11)

The trainable projections𝑊 (𝑙+1)
𝑄

,𝑊
(𝑙+1)
𝐾

,𝑊
(𝑙+1)
𝑉

∈ R2𝑑×𝑑 are
unique per layer. Here, we stack 3-layers of HG-Enc operators each
with a pooling ratio of 𝑝𝑟 = 0.75. We perform the global aver-
age pooling operation on the node-level embeddings of the pooled
graph to obtain z𝐻G𝑖

. There exist various techniques to perform
down-sampling on graphs. The local-graph pooling technique is
fundamentally different from the graph coarsening(contraction)
technique on the graph reduction method. The local-graph pooling
technique ranks the nodes based on the complex visual content
it contains. The low-ranking nodes are characterized by noise or
contain the no-visual element. The HG-Enc operator drops the
nodes of lower importance through the local-graph pooling tech-
nique andmodels the task-relevant induced subgraph (high-ranking
nodes) from the main graph. In comparison, the graph coarsening
technique[51] [37] clusters the nodes into supernodes based on the
learned node representations. It implicitly models the noise, learns
sub-optimal node representations, and are less-effective on the
graph-level classification tasks. In summary, the HG-Enc operator
learns the long-range, multi-level dependencies of the graph.

2.5 Clique Tree Encoder(CTEnc)
We perform the tree-decomposition[1] of the graph G to obtain the
clique tree representation T . It presents the tree-structured scaffold
of the local graph substructures(i.e., motifs and subgraphs) and
their pairwise relationships. Figure 5 depicts an illustration of the
tree decomposition of the graph representation of the nanoscale
images. Each supernode of the clique tree, C𝑖 = (V𝑖 , E𝑖) is an
induced subgraph of the main graph, G = (V, E). Each supernode
of the clique tree, 𝐶𝑖 is labeled with a V𝑖 ⊆ V and E𝑖 ⊆ E. Here,
𝑖 refers to the index of the supernode in T . Each supernode, C𝑖
in the clique tree T is described by a feature vector 𝑥𝑖 . As stated
earlier, each supernode in the clique tree is an induced subgraph
of the main graph. We apply a shared linear transformation on
the concatenated matrix of the node features in the subgraph to
obtain the feature vector of the supernode. We utilize tree-based
message-passing schemes to operate on the topology of the clique
tree T to determine its low-level embedding hT . A random leaf
supernode is selected as the root supernode of the clique tree. Neural

messages are computed and propagated across the supernodes of
the clique tree in two phases. The neural messages encode the
neighboring supernode’s information in the clique tree and the
local relations among the supernodes. At first, in the bottom-up
phase, neural messages are propagated from the leaf supernodes
iteratively towards the root supernode of the clique tree. In the
top-down phase, neural messages are dispatched from the root
supernode to its child supernodes down to the leaf supernodes of
the clique tree. The neural messages𝑚𝑖 𝑗 and𝑚 𝑗𝑖 are dispatched
from the supernode C𝑖 to the supernode C𝑗 through the superedge
(C𝑖 , C𝑗) and the vice-versa in the clique tree.

Algorithm 2 Iterative Tree-Message Passing Mechanism

Initialize messages: m(0)
𝑗𝑖

= 0
for 𝑡 = 1 to 𝑇 do

m(𝑡)
𝑗𝑖

= GRU
(
𝑥 𝑗 ,

{
m(𝑡−1)
𝑘 𝑗

}
𝑘∈N(𝑗)\𝑖

)
.

end for
h𝑖 = 𝜏

(
WT

1 𝑥𝑖 +
∑
𝑗 ∈N(𝑖) WT

2 m
(𝑇)
𝑗𝑖

)
.

Return hT = 𝑟𝑜𝑜𝑡 𝑛𝑜𝑑𝑒, h𝑖 .

Algorithm 3 Gating Mechanism on Tree-Structure
s𝑗𝑖 =

∑
𝑘∈N(𝑗)\𝑖 m𝑘 𝑗

z𝑗𝑖 = 𝜎
(
W𝑧𝑥 𝑗 + U𝑧s𝑗𝑖 + b𝑧

)
r𝑘 𝑗 = 𝜎

(
W𝑟𝑥 𝑗 + U𝑟m𝑘 𝑗 + b𝑟

)
m̃𝑗𝑖 = tanh

(
W𝑥 𝑗 + U

∑
𝑘∈N(𝑗)\𝑖 r𝑘 𝑗 ⊙ m(𝑡−1)

𝑘 𝑗

)
m𝑗𝑖 =

(
1 − z𝑘 𝑗

)
⊙ s𝑗𝑖 + z𝑘 𝑗 ⊙ m̃𝑘 𝑗

1 2 3

4 5 6

7 8 9

1,2,4,5

2,4,5,6

4,5,6,8

4,5,7,8 5,6,8,9

2,3,5,6

2,4,5,6

Figure 5: The nodes are labeled for illustration. We transform the
graph into a hierarchical clique tree. The supernodes are known
as cliques. The top-left-corner supernode of the clique tree is an
induced subgraph(consists of nodes with labels 1, 2, 4, 5, and all of
the edges) of the main graph and similarly the other supernodes.

Algorithm 2 presents our Clique Tree Encoder(CTEnc). The neu-
ral message m𝑗𝑖 is computed through the gating mechanism to
encapsulate the long-range interactions across the supernodes of
the clique tree by regulating the information diffusion. Algorithm
3 presents the gating mechanism on the tree structure. After per-
forming, the T-steps of message-passing iterations. We perform
the sum-pooling operation on the weighted neural messages dis-
patched from the local-tree neighbors, 𝑗 ∈ N (𝑖) to compute a
single-message vector. The supernode C𝑖 perceives the aggregated
message vector to refine its embedding h𝑖 . The transformed su-
pernode embeddings of the clique tree incorporate information
about their local T-hop neighbors. The tree-level embedding hT is
the root-node embedding, hroot and it summarizes the subgraph
patterns in the main graph. The trainable parameters of the learn-
ing algorithm WT

1 , W
T
2 are shared across the supernodes of the

EMCNet : Graph-Nets for Electron Micrographs Classification MLMS Workshop, KDD’22,

clique tree. 𝜏 is the sigmoidal function that introduces the non-
linearity in the message-passing schemes. In summary, the tree
encoder maps the discrete clique trees to determine the low-level
tree representations.

3 OUTPUT LAYER
The outputs of the parallel operating modules, GEnc, HGEnc, and
CTEnc are further transformed by the linear operator. We apply
softmax-activation on the output of the linear operator for the
multi-class classification task. It is mathematically described as
follows,

q𝑖 = softmax
(
W1zG𝑖

+W2z𝐻G𝑖
+W3hT𝑖

)
(12)

where q𝑖 is the probability distribution over the image categories
in the dataset. W1,W2 & W3 are the training parameters of the
model which are jointly-optimized along with other model param-
eters. We apply the argmax operation on q𝑖 for determining the
model predictions on the image label,𝑦𝑜

𝑖
. In summary, the hierarchi-

cal graph encoder(Hg-Enc) learns the multi-spatial scale patterns
in the nanoscale images. The Graph Encoder(GEnc) and clique tree
encoder(CTEnc) are tailored-designed to overcome the inherent
limitations of the high intra-class dissimilarity and high inter-class
similarity in the nanomaterial images classification task.

4 DATASETS
We conduct experiments on the Scanning Electron Microscopy
dataset[2] for nanomaterials identification. The labeled dataset con-
tains ≈21,283 high-resolution images at the nanoscale. The dataset
contains a wide collection of nano-objects. The images are classi-
fied into 10 categories, and they span a broad range of particles,
nanowires, patterned surfaces, microelectromechanical devices, etc.
The images are augmented by geometric transformations such as
shearing, and resizing to improve the quality of training data and re-
duce over-fitting. We randomly split the data. The test set comprises
4256 samples. The validation set contains 2128 samples, and the
remaining are for the training set. The dataset is highly imbalanced.
We utilize 10-Fold cross-validation for training the model to learn
from the training set. In addition, we utilized several open-source
material benchmark datasets to evaluate our proposed method. The
details are reported in the supplementary material.

5 EXPERIMENTAL SETUP
The model was trained in a supervised-learning approach for the
classification task. The data pre-processing involves feature scaling
to obtain normalized images. The resolution of each RGB image
in our dataset is 1024 × 768 × 3 pixels. We perform resizing of
the image to obtain a relatively lower spatial resolution, 256 ×
256× 3 pixels. We split the downscaled image into non-overlapping
patches with resolution 32 × 32 × 3 pixels. The positional and
patch embedding size(d) is 64. The batch size is 24. The iterative
message-passing steps(T) for GEnc & CTEnc operators is 6. The
training number of epochs is 100. The initial learning rate is 5𝑒−3.
We reduce the learning rate by half if the evaluation metric shows
no improvement on the validation set for a waiting number of
10 epochs. We run the gradient descent algorithm to minimize
the cross-entropy loss between the ground-truth labels and the
model predictions. We report the ensemble average of the results
obtained from five computational experiments. Each computational

experiment is run for a unique random seed. The experimental
results reported are the average value of the different random seeds-
based experimental run outputs. We utilized NVIDIA Tesla T4 GPUs
for the training of GNNs built upon the PyTorch framework. Early
stopping is implemented on the validation set to prevent the model
from over-fitting and for model selection. We evaluate the model
performance and report the evaluation metric on the test set.

6 EXPERIMENTS
In this work, we find an answer to the following research questions.

• RQ1 : How does our proposed method perform in classifica-
tion tasks compared to the ConvNets(CNNs), Vision Trans-
formers(ViTs), and traditional GNNs-based algorithms?

• RQ2 : How helpful are the various modules of our proposed
method for the improved overall performance of the model?

• RQ3 :What about the impact of positional encoding schemes?
• RQ4 : How do the baselines modules of similar functionality
perform compared to the modules in our framework?

• RQ5 :What is the impact of image categories on eachmodules?
• RQ6 : What about the quality of learned embeddings in self-
supervised settings?

7 RESULTS
7.1 RQ1: Benchmarking algorithms
The initial experimental results on the dataset are reported by [41].
They evaluate the well-known inception model and its variant’s
performance on the subset of the original dataset [2], which con-
tains a set of 10 categories for a total of 18,577 images. Due to
the unavailability of the subset dataset publicly, we conducted ex-
periments on the original dataset [2] which contains 12% higher
samples. However, the original dataset [2] curator doesn’t provide
the predefined train/vali-dation/test dataset. So, we utilize the k-
fold cross-validation method to evaluate our model performance
on the dataset. Table 1 presents the performance of the baseline
models based on ConvNets(CNNs), and Vision Transformers(ViTs)
architectures in comparison with our method. We utilize the neu-
ral network architecture reported in the literature for the baseline
models. For fair and rigorous comparison, we adopt identical ex-
perimental settings to generate the results of the baseline models.
The evaluation metric is the conventional Top-N accuracy, where
𝑁 ∈ {1, 2, 3, 5}. The standard deviation values are less than almost
2% of the mean value. For further comparisons with the recent
advances in the GNNs. We present a reasonable comparison under
identical experimental settings with the baseline GNNs techniques
in Table 2. The baseline GNNs performance is evaluated on the
graph representation of the nanoscale images. In comparison with
the baseline models, our proposed method attains significant gains
and demonstrates the best performance consistently across the
Top-N accuracy classification scores. We also compare our model
performance with the contrastive learning algorithms on vision and
graph data for classification tasks. We report the results in Tables,
1 and 2. We also evaluate our model performance in terms of preci-
sion (fraction of positive classified images are actually correct) and
recall (fraction of actual positives identified correctly). We report
an average precision of 0.705 and an average recall of 0.763 across
the image categories.

MLMS Workshop, KDD’22, Sagar and Rajat et.al

Table 1: Comparative study of our proposed method and the
baseline algorithms. We also report the performance of the
Self-Supervised(VSL) learning algorithms on Vision tasks.

Algorithms Parameters Top-1 Top-2 Top-3 Top-5

C
on

vN
et
s

AlexNet 5.70E+07 0.493 0.582 0.673 0.793
DenseNet 2.39E+05 0.539 0.750 0.875 0.906
ResNet 2.72E+05 0.512 0.766 0.891 0.906
VGG 3.44E+07 0.517 0.644 0.717 0.779

GoogleNet 2.61E+05 0.560 0.844 0.906 0.938
SqueezeNet 7.41E+05 0.436 0.469 0.609 0.656

V
SL

Barlowtwins[57] 8.99E+06 0.138 0.250 0.328 0.453
SimCLR[13] 8.73E+06 0.157 0.234 0.359 0.469
byol[28] 8.86E+06 0.130 0.234 0.281 0.422
moco[31] 8.73E+06 0.158 0.188 0.250 0.438
nnclr[21] 9.12E+06 0.144 0.266 0.313 0.531

simsiam[14] 9.01E+6 0.170 0.266 0.391 0.500

V
is
io
n
T
ra
ns

fo
rm

er
s(
V
iT
s)

CCT[29] 4.10E+05 0.600 0.781 0.875 0.969
CVT[54] 2.56E+05 0.537 0.750 0.828 0.953

ConViT[16] 6.00E+05 0.582 0.734 0.828 0.938
ConvVT[54] 9.23E+04 0.291 0.563 0.734 0.875
CrossViT[10] 8.35E+05 0.466 0.719 0.828 0.938
PVTC[53] 1.30E+06 0.567 0.766 0.813 0.922
SwinT[40] 2.78E+07 0.675 0.766 0.891 0.938

VanillaViT[19] 1.79E+06 0.623 0.828 0.859 0.938
Visformer[15] 1.21E+05 0.371 0.578 0.641 0.797

ATS[23] 3.26E+06 0.511 0.703 0.828 0.938
CaiT[49] 3.84E+07 0.616 0.750 0.906 0.938

DeepViT[59] 3.26E+06 0.512 0.734 0.875 0.938
Dino[8] 2.02E+07 0.047 0.219 0.391 0.432

Distallation[48] 2.06E+06 0.516 0.719 0.844 0.938
LeViT[27] 1.68E+07 0.597 0.813 0.875 0.953
MA[30] 3.87E+06 0.192 0.288 0.350 0.459
NesT[58] 1.61E+07 0.636 0.828 0.891 0.953

PatchMerger[43] 3.26E+06 0.549 0.719 0.859 0.922
PiT[33] 4.48E+06 0.520 0.703 0.828 0.953

RegionViT[9] 1.22E+07 0.575 0.797 0.859 0.922
SMIM[55] 2.38E+06 0.163 0.297 0.453 0.609
T2TViT[56] 1.03E+07 0.702 0.859 0.906 0.938
ViT-SD[38] 4.47E+06 0.613 0.766 0.906 0.953
EMCNet 9.70E+05 0.783 0.876 0.952 0.984

7.2 RQ2: Study of Modules
Our proposed method comprises of GEnc, HGEnc, and CTEnc
modules. We perform experiments on the SEM dataset by gradu-
ally removing each module in a controlled setting to examine the
efficacy of the key modules that be responsible for the improved
overall performance of the model. We refer to the EMCNet model
in the absence of different operators as follows:

• w/o GEnc: EMCNet model without the GEnc operator.
• w/o HGEnc: EMCNetmodel without theHGEnc operator.
• w/o CTEnc: EMCNet model without the CTEnc operator.

We report in Table 3 the results obtained on the test dataset in
terms of Top-1 classification accuracy. The results demonstrate the
effectiveness of the operators with negligible add-on computational
complexity. To be specific, the HGEnc operator is of advantage

Table 2: Comparative study of our proposed method and the
baseline algorithms. We also report the performance of the
Graph Self-Supervised(GSL) learning algorithms.

Algorithms Parameters Top-1 Top-2 Top-3 Top-5

G
SL

GBT[6] 7.09E+05 0.513 0.595 0.686 0.778
GRACE[60] 7.44E+05 0.581 0.646 0.711 0.773
BGRL[46] 6.92E+05 0.573 0.629 0.671 0.728

InfoGraph[45] 6.82E+05 0.560 0.631 0.694 0.756

G
ra
ph

C
on

vo
lu
ti
on

N
et
w
or
ks

APPNP[37] 7.35E+05 0.604 0.713 0.792 0.823
AGNN[47] 5.22E+05 0.517 0.733 0.841 0.943
ARMA[5] 4.57E+05 0.553 0.747 0.848 0.925
DNA[24] 8.48E+05 0.593 0.677 0.786 0.891
GAT[51] 6.31E+05 0.507 0.724 0.807 0.914

GGConv[39] 8.05E+05 0.583 0.778 0.841 0.944
GraphConv[42] 5.85E+05 0.623 0.787 0.875 0.953
GCN2Conv[12] 6.18E+05 0.697 0.813 0.867 0.945
ChebConv[17] 5.00E+05 0.547 0.762 0.834 0.896
GraphConv[42] 6.79E+05 0.533 0.727 0.847 0.961
GraphUNet[25] 9.57E+05 0.622 0.738 0.866 0.912
MPNN[26] 5.22E+05 0.643 0.792 0.873 0.959
RGGConv[7] 6.58E+05 0.633 0.727 0.886 0.928
SuperGAT[36] 5.54E+05 0.561 0.676 0.863 0.935
TAGConv[20] 5.74E+05 0.614 0.739 0.803 0.946
EMCNet 9.70E+05 0.783 0.876 0.952 0.984

in learning the long-range dependencies and complex hierarchical
representations of the graph in comparison to the flat message-
passing schemes in GNNs. Similarly, CTEnc operator learns the
complex structural characteristics in the graphs through the tree-
structured scaffolds representations. The GEnc operator helps in
better learning of the rich local-graph neighborhood information.

Table 3: The table reports the ablation studies to characterize
the effect of each module on the overall model performance.

Methods EMCNet w/o GEnc w/o HGEnc w/o CTEnc
Accuracy 0.783 ± 0.012 0.717 ± 0.014 0.594 ± 0.015 0.664 ± 0.019

7.3 RQ3: Study on Tokenization of Images
We conduct experiments to investigate the impact of positional em-
beddings that contribute to the better performance of the model. We
refer to the EMCNet model without incorporating the positional
embeddings as follows: w/o PosEmb: EMCNet model. We report
in Table 4 the results obtained on the test dataset in terms of Top-1
accuracy. The impact is significant on the model performance.

Table 4: The ablation studies to determine the impact of
positional embeddings on the model performance.

Methods EMCNet w/o PosEmb
Accuracy 0.783 ± 0.012 0.515 ± 0.012

We further investigate the model performance by modeling the
positional encoding scheme(PEs) by the Laplacian PEs[22], Self-
attention RPEs,[44], Signed RPEs[34], and Sinusoidal PEs[50] com-
pared to our approach of learning the optimal position embeddings
through training parameters of the model. We refer to the EMCNet
model by incorporating the following PEs techniques as follows:

EMCNet : Graph-Nets for Electron Micrographs Classification MLMS Workshop, KDD’22,

•w/ LPEs: EMCNet model with Laplacian PEs.
•w/ SPEs: EMCNet model with Sinusoidal PEs.
•w/ SARPEs: EMCNet model with Self-attention RPEs.
•w/ APEs: EMCNet model with Signed RPEs.

We report in Table 5 the results on the test dataset in terms of
Top-1 classification accuracy. The impact of various PEs techniques
is marginal on the model predictive performance in comparison
with our method.
Table 5: The table reports the ablation studies on positional-
encoding schemes.

Methods EMCNet w/ LPEs w/ SPEs w/ SARPEs w/ SRPEs
Accuracy 0.783 ± 0.012 0.772 ± 0.008 0.767 ± 0.010 0.790 ± 0.003 0.761 ± 0.007

7.4 RQ4: Study of GEnc module
We investigate the GEnc module efficacy in comparison with the
popular algorithms of similar functionality. The GEnc module con-
sists of the graph convolution operator to perform convolutional op-
erations on graphs and the global average pooling operator to deter-
mine the graph-level representation. We utilize well-known meth-
ods as baseline operators to perform convolution on the graphs. The
list includes, GAT([51]), APPNP([37]), DNA([24]), and GCN2([11]).
For the global graph-pooling, the list includes GraphMultisetTrans-
former(GMT, [3]), GlobalAttention(GA, [39]), Set2Set([52]), and
Global Summation Pooling(GSM). We refer to the EMCNet model
with the baseline graph convolution operators are as follows:

• w/ GAT: The EMCNet model with GAT operator.
• w/ APPNP: The EMCNet model with APPNP operator.
• w/ DNA: The EMCNet model with DNA operator.
• w/ GCN2: The EMCNet model with GCN2 operator.

The Top-1 accuracy is reported in Table 6. The results support
our graph convolution operator based approach to overcome the
shallow learning mechanisms of the baseline operators.

Table 6: The table reports the comparative study of the graph
convolution baseline operators on the model performance.

Methods EMCNet w/ GAT w/ APPNP w/ DNA w/ GCN2
Accuracy 0.783 ± 0.012 0.747 ± 0.012 0.759 ± 0.010 0.767 ± 0.009 0.749 ± 0.013

We refer to the EMCNet model with the baseline operators for
modeling the global read-out function in the GEnc module as:

• w/ GMT: The EMCNetmodel withGMT operator inGEnc.
• w/ GA: The EMCNet model with GA operator in GEnc.
• w/ Set2Set: The EMCNet model with Set2Set in GEnc.
• w/ GSM: The EMCNetmodel with GSM operator in GEnc.

We report the results obtained on the test dataset in terms of
Top-1 classification accuracy. The results reported in Table 7 demon-
strate no significant improvements in the model performance in
comparison to our method with the global average pooling operator.
Overall, our graph encoder proves to be effective by learning to
compute optimal graph-level representations.

Table 7: The table reports the comparative study of the base-
line global pooling operators on the model performance

Methods EMCNet w/ GMT w/ GA w/ Set2Set w/ GSM
Accuracy 0.783 ± 0.012 0.797 ± 0.011 0.791 ± 0.007 0.786 ± 0.008 0.772 ± 0.013

7.5 RQ4: Study of HGEnc module
We probe the HGEnc module effectiveness in comparison with
the well-known algorithms of identical functionality. The HGEnc
module operates in two phases. The first phase performs the graph
coarsening and the high-order message-passing schemes to com-
pute the hierarchical representations of the nodes in the coarser
graph. The successive phase performs the global average pooling of
the node representations to compute the graph-level representation.
We utilize popular methods as the baseline operators for modeling
the hierarchical graph coarsening and message-passing schemes.
The list includes, MemPool([51]), ASAPool([37]), SAGPool([24]),
and TopKPool([25]). We refer to the EMCNet algorithm with the
baseline hierarchical graph convolution operators are as follows:

• w/ MemPool: EMCNet model withMemPool operator.
• w/ ASAPool: EMCNet model with ASAPool operator.
• w/ SAGPool: EMCNet model with SAGPool operator.
• w/ TopKPool: EMCNet model with TopKPool operator.

Table 8: The table reports the study of baseline hierarchical
graph convolution operators on the model performance.
Methods EMCNet w/ MemPool w/ ASAPool w/ SAGPool w/ TopKPool
Accuracy 0.783 ± 0.012 0.713 ± 0.014 0.725 ± 0.011 0.709 ± 0.008 0.725 ± 0.013

The Top-1 classification accuracy is reported in Table 8 on the
test dataset. The results demonstrate the efficacy ofHGEncmodule
to model the complex local substructures to learn the hierarchical
representations of the graph. We refer to the EMCNet model with
the following baseline operators to perform the global average
pooling in the HGEnc module as:

• w/ GMT: TheEMCNetmodelwithGMT operator inHGEnc.
• w/ GA: The EMCNet model with GA operator in HGEnc.
• w/ Set2Set: The EMCNet model with Set2Set in HGEnc.
• w/ GSM: TheEMCNetmodelwithGSM operator inHGEnc.

The results are reported on the test dataset in Table 9 in terms of
Top-1 classification accuracy. It shows no significant improvement
or deterioration in the model performance in comparison to our
method with the global average pooling operator.

Table 9: The table reports the comparative study of the graph
read-out baseline operators on the model performance.
Methods EMCNet w/ GMT w/ GA w/ Set2Set w/ GSM
Accuracy 0.783 ± 0.012 0.779 ± 0.006 0.789 ± 0.003 0.775 ± 0.011 0.790 ± 0.007

7.6 RQ5: Study of image categories impact on
the modules

Each image category in the SEM dataset consists of a mixture of
easy(visually similar images) and hard samples(visually diverse),
characterized by the complexity of multi-scale spatial features, de-
gree of detail, and information density. The hard samples greatly
influence learning the parameters of the modules. Similarly, each
module learns distinct and dominant patterns from easy samples
and generalization ability from the hard samples of each image cat-
egory. Our proposed framework generalizes well despite the com-
plexity of patterns across the wide spectrum of image categories.
We study the impact of the GEnc, HGEnc, and CTEnc modules in
isolation with the absence of other modules on the classification
task of each image category. We perform additional experiments on

MLMS Workshop, KDD’22, Sagar and Rajat et.al

the SEM dataset by realizing our proposed method with the module
under investigation to support the rationale of each module on the
classification task. We refer to the EMCNet model realized with the
different operators as follows:

• w/ GEnc: EMCNet model with the GEnc operator.
• w/ HGEnc: EMCNet model with the HGEnc operator.
• w/ CTEnc: EMCNet model with the CTEnc operator.

We utilize the identical experimental settings, refer to section 5
for performing this study.We report the results in Table 10, obtained
on each image category of the test dataset in terms of Top-1 clas-
sification accuracy. We utilize 10-fold cross-validation to evaluate
the model performance. The GEnc and CTEnc modules effectively
capture the rich local information spread across each image for
the image categories such as biological, tips, films coated surface,
and powder. The long-range and hierarchical information inherent
in image categories such as fibres, porous sponge, patterned sur-
face, nanowires, particles, MEMS devices, and powder are effectively
modeled by the HGEnc module.
Table 10: The table reports the efficacy of each module on
learning different image categories. The underline score rep-
resents the best performance among the modules.

Category Modules EMCNet
GEnc HGEnc CTEnc

Biological 0.658 0.525 0.628 0.727
Tips 0.712 0.678 0.708 0.811
Fibres 0.485 0.657 0.523 0.783

Porous Sponge 0.567 0.665 0.595 0.722
Films Coated Surface 0.623 0.537 0.679 0.725
Patterned surface 0.576 0.712 0.625 0.771

Nanowires 0.624 0.749 0.671 0.789
Particles 0.563 0.673 0.654 0.729

MEMS devices 0.625 0.748 0.658 0.812
Powder 0.672 0.613 0.648 0.771

7.7 RQ6: Self-Supervised Learning
The graph contrastive learning(GCL) algorithms construct numer-
ous arbitrary-sized graph views through stochastic data augmenta-
tion techniques. GCL is a self-supervised learning algorithm that
learns a discriminative model by contrasting multiple positive-
paired augmented views of the same graph, as opposed to the
independently sampled negative-paired views of different graphs
in the embedded space. We utilize GCL as a pre-training model
to learn the node- and graph-level unsupervised representations
through mutual information maximization, while optimally pre-
serving the structural and attributional characteristics of the graph.
We model the graph encoder of the contrastive techniques with our
proposed, GEnc or HEnc operators. We leverage a broad range of
ML techniques such as Support Vector Machines, Random Forest,
and the Gradient Boosted Trees for the downstream task of model-
ing the target label of the graph data as a function of the generated
unsupervised representations. We evaluate and report the results
on the test dataset in terms of Top-1 classification accuracy. The
experimental results are reported in Table 11 and Table 12, where
we additionally report EMCNet model performance in comparison
with Graph contrastive techniques. The classification scores show

the effectiveness of the latent representations computed by the con-
trastive techniques through our design variants-based approach.
Table 11: The table reports the performance of the contrastive
techniques. The graph encoder of the contrastive techniques
is modeled by GEnc operator.

Methods SVM RF XGBoost EMCNet
BGRL, [46] 0.674 ± 0.09 0.721 ± 0.09 0.744 ± 0.08

0.783 ± 0.012GBT, [6] 0.693 ± 0.03 0.737 ± 0.05 0.756 ± 0.12
GRACE, [60] 0.713 ± 0.05 0.742 ± 0.06 0.773 ± 0.04

InfoGraph, [45] 0.723 ± 0.03 0.751 ± 0.11 0.764 ± 0.06

Table 12: The table reports the performance of the contrastive
techniques. The graph encoder of the contrastive techniques
is modeled by HEnc operator.

Methods SVM RF XGBoost EMCNet
BGRL, [46] 0.693 ± 0.07 0.742 ± 0.09 0.769 ± 0.013

0.783 ± 0.012GBT, [6] 0.701 ± 0.05 0.758 ± 0.03 0.761 ± 0.06
GRACE, [60] 0.717 ± 0.09 0.762 ± 0.09 0.771 ± 0.09

InfoGraph, [45] 0.724 ± 0.08 0.752 ± 0.04 0.775 ± 0.06

7.8 Additional Experiments
Here, we perform an additional set of experiments by resizing the
input images of resolution 1024×768×3 pixels to obtain a relatively
higher spatial resolution of 512 × 512 × 3 pixels. Here, we consider
two experimental settings as follows:

• In the first setting(FS), we split the image into the patches of
the resolution, 64 × 64 × 3 pixels. We project the flattened
patch representations into the embedding space to obtain a
size of 144 × 64.

• In the second setting(SS), we split the image into the patches
of the resolution, 32 × 32 × 3 pixels. We project the flattened
patch representations into the embedding space to obtain a
size of 256 × 64.

We refer to the EMCNet model with the aforementioned exper-
imental settings as follows,

• w/ FS: EMCNet model trained with the first settings.
• w/ SS: EMCNet model trained with the second settings.

Table 13: The table reports the effect of the patch size and
the number of patches on the model performance.

Methods EMCNet w/ FS w/ SS
Accuracy 0.783 ± 0.012 0.846 ± 0.009 0.867 ± 0.005

Table 14: Performance comparison of our clustering ap-
proach based EMCNet and the baseline EMCNet models.

Methods EMCNet w/ EMCNet : Clusters
Accuracy 0.783 ± 0.012 0.921 ± 0.0013

The results reported in Table 13 show significant improvements
in the model performance. To overcome the limitations of learning
from images having a high degree of similarity corresponding to
different image categories. We perform the K-Means clustering on
the SEM dataset to assign cluster labels to the images based on simi-
larity. We partition the images into k-fixed apriori clusters in which
each image belongs to a specific cluster. In this work, the optimal
setting for k is 2. We will train a single EMCNet model to learn
from the images corresponding to each cluster in the supervised
learning approach. We utilize an identical train/validation/test split

EMCNet : Graph-Nets for Electron Micrographs Classification MLMS Workshop, KDD’22,

of 70%/20%/10% for images assigned to each cluster. We report the
results in Table 14 denoted by w/ EMCNet : Clusters. The results
demonstrate exceptional performance in the Top-1 classification
accuracy in comparison with the baseline EMCNet model.

8 CONCLUSION AND FUTUREWORKS
We conduct the first in-depth study of the graph-neural networks
for solving the challenging electronmicrographs classification tasks.
We propose a joint optimization framework to determine the ex-
pressive graph-level representations by effectively summarizing
the complex hierarchical visual feature maps from electron micro-
graphs. The experimental results support our framework efficacy
to achieve better performance in comparison to the state-of-art
methods. In the future, we would like to extend our work on other
electron micrograph datasets like REM, SEM, STEM etc., and also
develop graph neural network-based models for object detection,
segmentation for nanomaterial microstructures.

REFERENCES
[1] Salvador Aguinaga, David Chiang, and Tim Weninger. 2018. Learning hyperedge

replacement grammars for graph generation. IEEE transactions on pattern analysis
and machine intelligence 41, 3 (2018), 625–638.

[2] Rossella Aversa, MohammadHadiModarres, Stefano Cozzini, Regina Ciancio, and
Alberto Chiusole. 2018. The first annotated set of scanning electron microscopy
images for nanoscience. Scientific data 5, 1 (2018), 1–10.

[3] Jinheon Baek, Minki Kang, and Sung Ju Hwang. 2021. Accurate learning of graph
representations with graph multiset pooling. arXiv preprint arXiv:2102.11533
(2021).

[4] Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, and Carsten
Steger. 2021. The MVTec anomaly detection dataset: a comprehensive real-world
dataset for unsupervised anomaly detection. International Journal of Computer
Vision 129, 4 (2021), 1038–1059.

[5] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.
Graph neural networks with convolutional arma filters. IEEE transactions on
pattern analysis and machine intelligence (2021).

[6] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla. 2021. Graph Barlow
Twins: A self-supervised representation learning framework for graphs. arXiv
preprint arXiv:2106.02466 (2021).

[7] Xavier Bresson and Thomas Laurent. 2017. Residual gated graph convnets. arXiv
preprint arXiv:1711.07553 (2017).

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 9650–9660.

[9] Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. 2021. Regionvit: Regional-to-
local attention for vision transformers. arXiv preprint arXiv:2106.02689 (2021).

[10] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. 2021. Crossvit: Cross-
attention multi-scale vision transformer for image classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 357–366.

[11] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning. PMLR, 1725–1735.

[12] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning. PMLR, 1725–1735.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[14] Xinlei Chen and Kaiming He. 2021. Exploring simple siamese representation
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 15750–15758.

[15] Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian.
2021. Visformer: The vision-friendly transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 589–598.

[16] Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli,
and Levent Sagun. 2021. ConViT: Improving Vision Transformers with Soft
Convolutional Inductive Biases. arXiv preprint arXiv:2103.10697 (2021).

[17] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016).

[18] AdityaMDeshpande, Ali AMinai, andManish Kumar. 2020. One-shot recognition
of manufacturing defects in steel surfaces. Procedia Manufacturing 48 (2020),

1064–1071.
[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[20] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya
Kar. 2017. Topology adaptive graph convolutional networks. arXiv preprint
arXiv:1710.10370 (2017).

[21] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, andAndrew
Zisserman. 2021. With a little help frommy friends: Nearest-neighbor contrastive
learning of visual representations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 9588–9597.

[22] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer
networks to graphs. arXiv preprint arXiv:2012.09699 (2020).

[23] Mohsen Fayyaz, Soroush Abbasi Kouhpayegani, Farnoush Rezaei Jafari, Eric
Sommerlade, Hamid Reza Vaezi Joze, Hamed Pirsiavash, and Juergen Gall. 2021.
Ats: Adaptive token sampling for efficient vision transformers. arXiv preprint
arXiv:2111.15667 (2021).

[24] Matthias Fey. 2019. Just jump: Dynamic neighborhood aggregation in graph
neural networks. arXiv preprint arXiv:1904.04849 (2019).

[25] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In international conference
on machine learning. PMLR, 2083–2092.

[26] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[27] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand
Joulin, Hervé Jégou, and Matthijs Douze. 2021. LeViT: a Vision Transformer in
ConvNet’s Clothing for Faster Inference. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 12259–12269.

[28] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new
approach to self-supervised learning. Advances in Neural Information Processing
Systems 33 (2020), 21271–21284.

[29] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and
Humphrey Shi. 2021. Escaping the big data paradigm with compact transformers.
arXiv preprint arXiv:2104.05704 (2021).

[30] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Gir-
shick. 2021. Masked autoencoders are scalable vision learners. arXiv preprint
arXiv:2111.06377 (2021).

[31] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[33] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and
Seong Joon Oh. 2021. Rethinking spatial dimensions of vision transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 11936–
11945.

[34] Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. 2020. Improve
transformer models with better relative position embeddings. arXiv preprint
arXiv:2009.13658 (2020).

[35] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[36] Dongkwan Kim and Alice Oh. 2022. How to find your friendly neighborhood:
Graph attention design with self-supervision. arXiv preprint arXiv:2204.04879
(2022).

[37] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[38] Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. 2021. Vision Trans-
former for Small-Size Datasets. arXiv preprint arXiv:2112.13492 (2021).

[39] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[40] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 10012–10022.

[41] Mohammad Hadi Modarres, Rossella Aversa, Stefano Cozzini, Regina Ciancio,
Angelo Leto, and Giuseppe Piero Brandino. 2017. Neural network for nanoscience
scanning electron microscope image recognition. Scientific reports 7, 1 (2017),
1–12.

[42] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 33. 4602–4609.

MLMS Workshop, KDD’22, Sagar and Rajat et.al

[43] Cedric Renggli, André Susano Pinto, Neil Houlsby, Basil Mustafa, Joan Puigcerver,
and Carlos Riquelme. 2022. Learning to Merge Tokens in Vision Transformers.
arXiv preprint arXiv:2202.12015 (2022).

[44] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with
relative position representations. arXiv preprint arXiv:1803.02155 (2018).

[45] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[46] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos,
Petar Veličković, and Michal Valko. 2021. Bootstrapped representation learning
on graphs. In ICLR 2021 Workshop on Geometrical and Topological Representation
Learning.

[47] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018.
Attention-based graph neural network for semi-supervised learning. arXiv
preprint arXiv:1803.03735 (2018).

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers
& distillation through attention. In International Conference on Machine Learning.
PMLR, 10347–10357.

[49] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and
Hervé Jégou. 2021. Going deeper with image transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 32–42.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[51] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[52] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. 2015. Order matters: Se-
quence to sequence for sets. arXiv preprint arXiv:1511.06391 (2015).

[53] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. 2022. PVT v2: Improved baselines with Pyramid
Vision Transformer. Computational Visual Media (2022), 1–10.

[54] HaipingWu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei
Zhang. 2021. Cvt: Introducing convolutions to vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 22–31.

[55] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao,
Qi Dai, and Han Hu. 2021. Simmim: A simple framework for masked image
modeling. arXiv preprint arXiv:2111.09886 (2021).

[56] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Fran-
cis EH Tay, Jiashi Feng, and Shuicheng Yan. 2021. Tokens-to-token vit: Training
vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 558–567.

[57] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. 2021. Bar-
low twins: Self-supervised learning via redundancy reduction. In International
Conference on Machine Learning. PMLR, 12310–12320.

[58] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Arik, and Tomas Pfister.
2022. Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and
Interpretable Visual Understanding. (2022).

[59] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang,
Qibin Hou, and Jiashi Feng. 2021. Deepvit: Towards deeper vision transformer.
arXiv preprint arXiv:2103.11886 (2021).

[60] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

9 SUPPLEMENTARY MATERIAL
9.1 SEM dataset
In the Figure 6 we show the representative images of the 10 different
image categories in the dataset. The SEM dataset[2], please refer to
Table 15 has unequal distributions in the total count of each image
category in the dataset.

9.2 Hyperparameters Study
We perform an in-depth analysis of the hyperparameters search to
determine the effective model complexity of our proposed method,
EMCNet. The hyperparameters of the algorithm are the dimension-
ality of embedding(𝑑), the graph-pooling ratio(𝑝𝑟), and the batch
size(𝑏𝑠). The hyperparameter tuning is based on grid-search tech-
nique. We learn the tuple of hyperparameters that yield the optimal
performance of our proposed method on the validation set in terms

(a) Biological (b) Fibre

(c) Films (d) MEMS device

(e) Nanowires (f) Particles

(g) Pattern surface (h) Porous sponge

(i) Powder (j) Tips

Figure 6: The SEM dataset

Table 15: The SEM dataset: The segregation of the number of
images per category is presented here.

Category Number of images
Biological 973

Tips 1625
Fibres 163

Porous Sponge 182
Films Coated Surface 327
Patterned surface 4756

Nanowires 3821
Particles 3926

MEMS devices and electrodes 4591
Powder 918
Total 21282

EMCNet : Graph-Nets for Electron Micrographs Classification MLMS Workshop, KDD’22,

Figure 7: Illustration of seven catogories from MVTec anomaly detection dataset.

Figure 8: Illustration of six defect categories from NEU surface defect dataset of hot-rolled steel strip.

Figure 9: Illustration of five classes of corrosion rating assigned by ASTM

Figure 10: Illustration of the different materials from KTH-TIPS dataset

MLMS Workshop, KDD’22, Sagar and Rajat et.al

of the Top-1 classification score. In each experiment, we change
the hyperparameter under investigation and the remaining hyper-
parameters are kept constant as described in section 5 to determine
the effect of the hyperparameter on the model performance. The
optimal hyperparameters determined from the hyperparameter
search are as follows, 𝑑 is 64, 𝑝𝑟 is 0.75 and 𝑏𝑠 is 24.

Table 16: Table reports the hyperparameter study

𝑑 32 64 96 128
0.712 ± 0.05 0.783 ± 0.012 0.789± 0.07 0.791 ± 0.08

𝑝𝑟 0.25 0.5 0.75 0.95
0.667 ± 0.08 0.725± 0.03 0.783± 0.012 0.748± 0.06

bs 12 24 48 64
0.706 ± 0.04 0.783 ± 0.012 0.790± 0.07 0.786± 0.05

9.3 Benchmarking on Material datasets
• MVTec dataset1[4] is an open-sourced anomaly detection
benchmark dataset of industrially driven products. The data-
base contains ≈5000 high-resolution RGB images. The im-
ages are classified into 15 different categories of objects(e.g
bottle, cable, metal nut, hazelnut, toothbrush, capsule, pills,
screw, transistor, zipper) and textures(e.g carpet, grid, leather,
tile, and wood). The training/validation set contains 3629 im-
ages. The test set contains the remaining images. The train-
ing set contains normal data(anomaly-free), whereas the test
set contains both the normal and the anomalies(consists of
different kinds of defects). A few representative images of
a sample of defect categories, along with the correspond-
ing defect-free images are shown in Figure 7. The dataset
is highly class imbalanced. We evaluate the performance
of our proposed method on the supervised anomaly detec-
tion task(binary classification) in comparison with several
baseline algorithms.

• NEU surface defect dataset(NEU-SDD) 2[18] contains
1800 gray-scale images of hot-rolled steel strip. The database
is classified into six classes of surface defects that includes
crazing, inclusion, patches, pitted surface, rolled-in scale, and
scratches. Each class has 300 sample images. A few represen-
tative images of the surface defects are shown in Figure 8.
We evaluate the performance of our proposed method on
the multiclass classification task on the balanced dataset in
comparison with several baseline algorithms.

• Corrosion Image Dataset(CMI)3 is utilized to benchmark
various algorithmic approaches for automation of corrosion
assessment in materials. The dataset contains 600 images of
corroding panels of resolution 512×512 pixels. Each panel
in the dataset is annotated by the experts to provide the
measure of the corrosion through the ASTM standards. In
general, the corrosion rating is assigned on a scale of dis-
crete integers from 1 to 10. The corrosion rating of 10 implies
that the panel is in the initial stage of corrosion. The data
presenters projects it as a class-balanced dataset by reject-
ing the panels with high corrosion ratings(1-4). Thus the
dataset is classified into five corrosion ratings(5-9). Each

1Datasource: https://www.mvtec.com/company/research/datasets.
2Datasource: http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
3https://arl.wpi.edu/corrosion_dataset

corrosion rating based image category has 120 images. The
sample images per corrosion rating are shown in Figure9.
We evaluate the performance of our proposed method on
the multi-class classification task in comparison with several
baseline algorithms.

• KTH-TIPS4 is a texture database which contains images of
varying illumination, pose and scale of ten different materi-
als. It contains a sample of 810 images belonging to different
classes of materials such as crumpled aluminum foil, brown
bread, corduroy, cotton, cracker, linen, orange peel, sandpa-
per, sponge, and styrofoam. A few example images per cat-
egory are shown in Figure10. The image resolution in the
dataset is 200×200 pixels. We evaluate the performance of
our proposed method on the multi-class classification task
in comparison with several baseline algorithms.

We report the results of the baseline algorithms and our model
performance in Table 17 on the open-sourced benchmark datasets.
The evaluation metric is the Top-1 classification accuracy. We
achieve SOTA performance on all the datasets.

Table 17: Performance comparison on the datasets.
Algorithms MVTec NEU-SDD CMI KTH-TIPS

B
as
el
in
es ResNet 0.912 0.926 0.911 0.932

GoogleNet 0.926 0.933 0.913 0.924
SqueezeNet 0.931 0.947 0.937 0.958
VanillaViT 0.954 0.953 0.955 0.966
EMCNet 0.983 0.978 0.971 0.992

4https://www.csc.kth.se/cvap/databases/kth-tips/index.html

https://www.mvtec.com/company/research/datasets.
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
https://arl.wpi.edu/corrosion_dataset
https://www.csc.kth.se/cvap/databases/kth-tips/index.html

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Tokenization of Images
	2.2 Graph Representation
	2.3 Graph Encoder(GEnc)
	2.4 Hierarchical Graph Encoder(HG-Enc)
	2.5 Clique Tree Encoder(CTEnc)

	3 Output Layer
	4 Datasets
	5 Experimental Setup
	6 Experiments
	7 Results
	7.1 RQ1: Benchmarking algorithms
	7.2 RQ2: Study of Modules
	7.3 RQ3: Study on Tokenization of Images
	7.4 RQ4: Study of GEnc module
	7.5 RQ4: Study of HGEnc module
	7.6 RQ5: Study of image categories impact on the modules
	7.7 RQ6: Self-Supervised Learning
	7.8 Additional Experiments

	8 Conclusion and Future Works
	References
	9 Supplementary Material
	9.1 SEM dataset
	9.2 Hyperparameters Study
	9.3 Benchmarking on Material datasets

